
Distributed Subgraph Counting: A General Approach

Hao Zhang, Jeffrey Xu Yu, Yikai Zhang, Kangfei Zhao, Hong Cheng

The Chinese University of Hong Kong, Hong Kong, China
{hzhang,yu,ykzhang,kfzhao,hcheng}@se.cuhk.edu.hk

ABSTRACT

In this paper, we study local subgraph counting, which is
to count the occurrences of a user-given pattern graph p
around every node v in a data graph G, when v matches
to a given orbit o in p, where the orbit serves as a center
to count p. In general, the orbit can be a node, an edge,
or a set of nodes in p. Local subgraph counting has played
an important role in characterizing high-order local struc-
tures that exhibit in a large graph, and has been widely
used in denser and relevant communities mining, graphlet
degree distribution, discriminative features selection for link
prediction, relational classification and recommendation. In
the literature, almost all the existing works support a k-
node pattern graph, for k ≤ 5, with either 1 node orbit or 1
edge orbit. Their approaches are difficult to support larger
k due to the fact that subgraph counting is to count by sub-
graph isomorphism. In this work, we develop a new general
approach to count any k pattern graphs with any orbits se-
lected. The key idea behind is that we do local subgraph
counting by homomorphism counting, which can be solved
by relational algebra using joins, group-by and aggregation.
By homomorphism counting, we do local subgraph count-
ing by eliminating counts for those that are not subgraph
isomorphism matchings from the total count for any pos-
sible matchings. We have developed a distributed system
named DISC on Spark. Our extensive experiments validate
the efficiency of our approach by testing 114 local subgraph
counting queries used in the existing work over real graphs,
where no existing work can support all.

PVLDB Reference Format:

Hao Zhang, Jeffrey Xu Yu, Yikai Zhang, Kangfei Zhao, Hong
Cheng. Distributed Subgraph Counting: A General Approach.
PVLDB, 13(11): 2493-2507, 2020.
DOI: https://doi.org/10.14778/3407790.3407840

1. INTRODUCTION
Graph has been widely used in modelling complex in-

terconnectivity of objects in real applications such as com-

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 21508097.
DOI: https://doi.org/10.14778/3407790.3407840

merce, medicine, and social network [40, 23, 52, 31, 82, 72,
61]. Among many graph algorithms/systems being studied,
local subgraph counting is to count how many times a user-
given pattern graph p exists around every node(s) in a large
data graph G. Such local subgraph counting has played
an increasingly important role in characterizing high-order
local structures that exhibit in a large graph. In [75, 17, 76]
local subgraph counting is used to mine denser and relevant
communities. In [86, 85] local subgraph counting is used to
compute metrics that quantify the clustering of nodes such
as higher-order local clustering coefficient and local closure
coefficient, and in [60] local subgraph counting provides in-
sights (e.g., graphlet degree distribution) into summarizing
the structure of an entire network. Furthermore, a wide
range of studies leverage the counts of local subgraphs as
powerful discriminative features for pattern matching and
recognition. Such studies include network comparison and
alignment in biological networks [36], anomaly detection in
computer networks [55, 11], detecting strong ties in social
networks [69], and the statistical relational learning tasks
for link prediction, relational classification and recommen-
dation [66, 47], where local subgraph counting improves the
node or edge representations [8, 68, 7, 65]. As indicated
in [66], the subgraph patterns to count are graphlets from
the simplest reciprocity (e.g., 2-star, triangle) to complex
patterns (e.g, clique). In order to optimize a constructed
model and its training process in mining/learning where fea-
ture selection plays an important role, it is highly demanded
to efficiently process local subgraph counting for any pattern
graphs in a distributed manner.

Local subgraph counting has been studied on large graphs
[9, 29, 30, 38, 39, 58, 49, 48, 50, 38, 10, 26, 58]. Let Q be a
local subgraph counting query as Q = (p, o, t), where t spec-
ifies the type of counting by subgraph isomorphism (e.g.,
local subgraph counting or local induced subgraph count-
ing), p is a connected k-node pattern graph, and o is a given
orbit of p which serves as a center to count p. Both local
subgraph counting and local induced subgraph counting are
to count how many p exist around every node v in a data
graph G if the orbit is a node orbit and o maps to v. For
example, consider Fig. 1. Assuming u2 of p is the orbit,
the local induced subgraph count of v5 is 1 because there
is exactly one match of p in G that maps u2 to v5, namely
{u1 → v6, u2 → v5, u3 → v4, u4 → v1}. We emphasize that
the orbit can also be an edge, or a set of nodes in p.

As given by the survey on local subgraph counting [63],
there are enumeration, matrix-based, and decomposition-
based approaches. An enumeration approach [57, 81] is to

2493

Table 1: The number of combinations for k-node patterns

Orbits 1 2 3 4 5 6 7

none 1 1 2 6 21 112 853
1 node 1 1 3 11 58 407 4,306
1 edge 0 1 2 10 57 486 5,985
1 triangle 0 0 1 3 21 197 2,752
2 nodes 0 0 1 8 67 701 10,047

count by enumerating all matches of p in G. A matrix-
based approach [38, 39, 48, 50, 26] is to count by solving
linear algebra equations based on the enumeration of some
k′-node pattern graphs that are not the same as the k-node
pattern graph p, for k′ ≤ k. And a decomposition-based
approach [30, 58] is to count p based on counting smaller
graphs that are obtained by decomposing p. Local subgraph
counting is challenging, since there are a large number of
combinations for pattern graphs p with the orbits o selected.
We show the number of patterns in Table ?? that need to be
counted for a k-node pattern graph for k ≤ 7. Take 1 node
orbit (center) as an example, when k = 5, there are 58 com-
binations, and when k = 6 there are 407 combinations. The
existing work can only support a certain k-node graph (e.g.,
k ≤ 5) and can only support some of k-node graphs (e.g., 32
out of 58 5-node pattern graphs) with certain types of orbit
(e.g., 1 node orbit or 1 edge orbit). The approaches that
support 1 node orbit cannot be used to support 1 edge orbit
and vice versa. The difficulty of local subgraph counting is
due to the fact that the nature of subgraph counting is by
subgraph isomorphism. The only approach that can handle
any k-node pattern graphs with node orbits selected is the
single machine matrix-based approach JESSE [49, 48, 50].
But JESSE cannot support counting efficiently when k > 4.
In this paper, we give a general approach that can handle
large k with different orbits (e.g., 1 node orbit, 1 edge orbit,
etc.) efficiently.

We explore how to support subgraph counting by homo-
morphism [37, 28, 34, 25, 27, 18, 12, 24], which has not
yet been well studied in database community. In general,
the problem of deciding whether a homomorphism from a
graph p to another graph G exists is hard. Given G to be
fixed, the decision problem is NP-complete if G is not bi-
partite and does not contain a loop [37], and the counting
counterpart (i.e., counting the number of homomorphisms
from p to G) is #P-complete if G has a connected compo-
nent that is not a complete graph with all loops present or a
complete bipartite graph with no loops present [28]. On the
other hand, when p is restricted to a recursively enumerable
class of graphs P , the decision problem (resp. the counting
problem) is in P if and only if P has bounded treewidth
modulo homomorphic equivalence, under the assumption of
FPT 6= W[1] (resp. FPT 6= #W[1]) [34, 25]. As shown
in [27], if a tree decomposition of p with width w is pro-
vided, then the number of homomorphisms from p to G can
be computed in O(np ·n

w+1 min{n, w}) time with np and n
being the numbers of nodes in p and G, respectively. All
works focus on global subgraph counting [28, 25, 27, 18, 12,
24], which is to count how many subgraphs that match the
pattern graph p in an entire graph G. Our focus is on local
subgraph counting.
Contributions. We propose a new distributed decomposi-
tion based approach by adapting the homomorphism count-
ing in [18] for local subgraph counting for different orbits. It
is important to note that the approach of subgraph count-
ing by homomorphism counting is mainly discussed in terms

of complexity, and there are no systems to do so [63]. The
main reason behind is that by homomorphism counting it
is to do subgraph counting by eliminating counts for those
that are not subgraph matchings from the total count for
any possible matchings, which can be costly since it needs
to explore all possible matchings in practice. First, we give
details on how to reduce local subgraph counting from iso-
morphism to homomorphism in the presence of orbits where
orbits can be 1 node orbit, 1 edge orbit, or any other orbits.
Second, we take a relational-based approach to support ho-
momorphism counting by relational algebra (e.g., natural
joins with group-by and aggregation). The reason that we
do so instead of taking a native graph approach is as fol-
lows. To reduce the cost, we need (a) to decompose a com-
plex pattern graph p into smaller subgraphs, and (b) to use
counting to prune unnecessary enumeration. However, it
is difficult to come up with a way that supports both (a)
and (b) for any possible p with different orbits by a native
graph approach. By a relational-based approach, we decom-
pose a query into smaller queries, and push down group-by
and aggregations over joins. Third, we have implemented
a distributed system DISC on Spark based on the state-of-
the-art approach for join queries HCubeJoin [22]. We discuss
how to further reduce the communication cost and comput-
ing cost with the additional group-by and aggregation over
joins. Fourth, we conducted extensive experimental studies
to compare DISC with the representative existing approaches
over 9 real datasets. Our testing is based on 114 local in-
duced subgraph counting queries used in the existing sys-
tems [57, 30, 38, 39, 58, 26, 81, 49, 48, 50]. It is important
to mention that there is no single system that can run all
the 114 queries efficiently.
Organizations. We give preliminaries and the problem
statement in Section 2, and discuss the existing approaches
in Section 3. We propose a new decomposition-based ap-
proach by homomorphism counting in Section 4, discuss
homomorphism counting by relational algebra in Section 5
and distributed processing in Section 6. We discuss related
works in Section 7, and report the efficiency of our approach
in Section 8. We conclude our work in Section 9.

2. PRELIMINARIES
We model a simple undirected graph as G = (V,E), where

V and E denote the sets of nodes and edges in G, re-
spectively. Let n = |V | and m = |E| denote the number
of nodes and the number of edges, respectively. A graph
G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E, and
is further an induced subgraph of G if E′ contains all the
edges in G that have both endpoints belonging to V ′. We
call a graph a k-node graph (or k-graph) if it has k nodes.
Homomorphism & Subgraph Isomorphism. Let G =
(V,E) be a data graph and p = (Vp, Ep) be a pattern graph.
A function f : Vp 7→ V is called a homomorphism of p if
for each edge (u, u′) ∈ Ep, we have (f(u), f(u′)) ∈ E. A
homomorphism f of p is further called a subgraph isomor-
phism (or isomorphism1 for short) of p if f is injective, i.e.,
f never maps distinct nodes in Vp to the same node in V .
Each homomorphism f of p naturally induces a subgraph
Gf = (Vf , Ef) of G, where Vf = {f(u) | u ∈ Vp} and
Ef = {(f(u), f(u′)) | (u, u′) ∈ Ep}. Such a Gf is called an

1
In graph theory, subgraph isomorphism and isomorphism are with

different meanings. We use the term “isomorphism” solely as a short-

hand for “subgraph isomorphism”.

2494

v
1

v
4

v
2

v
3

G

v
6

v
5

v
5

v
6

v
4

v
1

v
1

v
4

v
2

v
1

v
4

v
2

v
3

(a) Data Graph (b) Matches of p

u
3

u
4

u
2

u
1

p

(c) Pattern Graphs

Gf1 Gf2 Gf3

u
3

u
2

u
1

p’

Figure 1: An Example

iso-match (resp. a hom-match) of p provided that f is an iso-
morphism (resp. a homomorphism). In addition, we classify
isomorphisms f into two types in terms of Gf . Specifically,
if Gf is an induced subgraph of G, f is an induced isomor-
phism; otherwise, f is a non-induced isomorphism. In the
literature, homomorphism can be supported by relational
joins [51, 13, 41].

Example 2.1: Fig. 1 shows a data graph G and a pattern
graph p. Consider the following 3 mappings from Vp to V :
f1 = {u1 → v1, u2 → v4, u3 → v5, u4 → v6}, f2 = {u1 →
v3, u2 → v2, u3 → v1, u4 → v4} and f3 = {u1 → v1, u2 →
v2, u3 → v1, u4 → v4}. Their corresponding Gfi ’s are shown
in Fig. 1(b). It is not hard to verify that f1, f2 and f3
are all homomorphisms. Indeed, for each edge (u, u′) in p,
(fi(u), fi(u

′)) is present in G. However, only f1 and f2 are
subgraph isomorphisms since f3 is not injective (f3 maps
both u1 and u3 to v1). As a result, Gf1 and Gf2 both are
iso-matches, while Gf3 is just a hom-match. In addition,
f1 is an induced isomorphism because Gf1 is an induced
iso-match, while f2 is a non-induced isomorphism.

Automorphism Orbit. We first define the notion of auto-
morphism. For a given graph G = (V,E), an automorphism
is a bijective function g : V 7→ V such that (v, v′) ∈ E iff
(g(v), g(v′)) ∈ E. Intuitively, an automorphism g maps G
to itself in a structure-preserving manner. The notion of
automorphism orbit is defined over the subgraphs of G. For
example, the node orbits of G are defined as the equiva-
lence classes of V under automorphisms. That is, for any
two nodes v, v′ ∈ V , they belong to the same node orbit iff
an automorphism g satisfying g(v) = v′ exists. Intuitively,
a node plays the same topological role as the other nodes
in the same orbit. The edge orbits of G are defined to be
the equivalence classes of E under automorphisms. Specif-
ically, for any two edges (u, v), (u′, v′) ∈ E, they are in the
same edge orbit iff there is an automorphism g such that
g(u) = u′ ∧ g(v) = v′ or g(u) = v′ ∧ g(v) = u′. Other orbits
can be defined similarly. We would like to stress two points
here. First, for ease of presentation, we focus on node orbits
hereafter, but we emphasize that our approach also works
with other orbits. Second, we assume that a representative
node is selected for each node orbit. Each time we refer to
a node orbit, we actually mean its representative. After all,
the nodes in the same orbit are topologically equivalent.

Example 2.2: For the pattern graph p in Fig. 1, the func-
tions g1 = {ui → ui, i ∈ [1, 4]} and g2 = {u1 → u4, u2 →
u3, u3 → u2, u4 → u1} are the only two automorphisms.
There are two node orbits in p, i.e., {u1, u4} and {u2, u3}.

Local Subgraph Counting. In this work, we study local
subgraph counting queries. Specifically, a subgraph count-
ing query Q is defined as Q = (p, o, t), where p = (Vp, Ep)
is a connected pattern graph, o is a node orbit of p, and
t specifies the type of the query. We provide two public
query types, namely SubG and InSubG, for local subgraph
counting and local induced subgraph counting, respectively.
Specifically, given a data graph G = (V,E), a node v ∈ V

and a query Q = (p, o,SubG), let SubGp,o(v) = {Gf | f
is an isomorphism of p with f(o) = v}. In other words,
SubGp,o(v) contains all iso-matches of p that match v to o.
With SubGp,o(·), the problem of local subgraph counting is
to compute |SubGp,o(v)| for every node v ∈ V . InSubGp,o(·)
and the problem of local induced subgraph counting are de-
fined similarly but in terms of induced isomorphisms.

Example 2.3: Consider Fig. 1 and a SubG query Q1 =
(p′, u2,SubG). For v5, there are two isomorphisms that map
u2 to v5, i.e., f4 = {u1 → v4, u2 → v5, u3 → v6} and f5 =
{u1 → v6, u2 → v5, u3 → v4}. Moreover, Gf4 and Gf5 both
refer to the same subgraph induced by {v4, v5, v6}. Hence,
SubGp′,u2

(v5) = {Gf4}. Next, consider another query Q2 =
(p′, u2, InSubG). We have InSubGp′,u2

(v5) = SubGp′,u2
(v5).

After all, both f4 and f5 are induced isomorphisms.

In order to handle SubG and InSubG queries, we further
define 3 query types, namely ISO, InISO and HOM, for lo-
cal isomorphism counting, local induced isomorphism count-
ing and local homomorphism counting, respectively. Accord-
ingly, for a queryQ of these types, what ISOp,o(·), InISOp,o(·)
and HOMp,o(·) keep are no longer subgraphs but functions.
Specifically, ISOp,o(v)/InISOp,o(v)/HOMp,o(v) = {f | f is
an isomorphism/induced isomorphism/homomorphism of p
with f(o) = v}. For convenience, for a query Q = (p, o, t),
when p and o are clear, we also use t(·) in place of tp,o(·).

Example 2.4: Continuing with Example 2.3, for p′ and
orbit u2, we have ISO(v5) = InISO(v5) = {f4, f5}. As
for HOM, we have HOM(v5) = {f4, f5, f6, f7}, where f6 =
{u1, u3 → v4, u2 → v5} and f7 = {u1, u3 → v6, u2 → v5}.

Next, we show |SubG(v)| = |ISO(v)| /c and |InSubG(v)| =
|InISO(v)| /c where c is a constant solely dependent on p. As
a result, it suffices to evaluate |ISO(·)|/|InISO(·)| to answer
SubG/InSubG queries. It is easy to verify that SubG(v) =
{Gf | f ∈ ISO(v)} and InSubG(v) = {Gf | f ∈ InISO(v)}
for ∀v ∈ V . Consider a subgraph Gf ∈ SubG(v). Let F =
{f1, f2, · · · , f|F |} be the isomorphisms in ISO(v) that induce
Gf and let A be the automorphisms g of p that satisfy g(o) =
o. We have |F | = |A|. Indeed, (i) for ∀g ∈ A, the function
composition f1◦g of f1 and g is an isomorphism that induces
Gf and maps o to v; hence, for ∀g ∈ A, f1 ◦ g belongs
to F , implying |F | ≥ |A|; and (ii) for ∀fi ∈ F , with f−1

1

being the left inverse of f1, f
−1
1 ◦ fi is an automorphism

mapping o to o and thus is in A, implying |F | ≤ |A|. In light
of these, we have |SubG(v)| = |ISO(v)| /|A| and can show
|InSubG(v)| = |InISO(v)| /|A| in a similar manner. We thus
focus on queries of types ISO and InISO instead hereafter.

Counting subgraphs by Q = (p, o, t) is challenging since
there are a large number of combinations for pattern graphs
p with the orbits o selected. We show the number of patterns
in Table ?? that need to be counted for a k-node pattern
graph for k ≤ 7. There are many different pattern graphs, p,
that need to be counted, as shown in the first row with none
orbits selected. In the following rows, we show the number
of combinations with some orbits selected. The second row
shows the number of combinations with 1 node orbit. For
3-node pattern graph (e.g., {u, v, w}), there are 2 possible
connected graphs: a tree with 2 edges and a triangle with
3 edges. In the tree there are 2 orbits, and in the triangle
there is 1 orbit. In total, the number of combinations with
1 node orbit selected is 3. The 11 combinations for 4-node
pattern graphs with 1 node orbit are shown in Fig. 2, where
the black node is the orbit. The third row shows the number

2495

Table 2: Subgraph Counting Approaches
Name Approach k-graph Orbit Flexible? Sharing? Platform Lang

PTE [57] Enumeration 3 (some) any ✓ ✗ Distributed Java
DIST [30] Decomposition 3, 4 1 (Node) ✗ ✓ Distributed C++
ORCA [38, 39] Matrix ≤ 5 1 (Node) ✗ ✓ Serial C++
EVOKE [58] Decomposition ≤ 5 1 (Node) ✗ ✓ Serial C++
ECLOG [26] Matrix ≤ 5 (some) 2 (Edge) ✗ ✓ Multi-core C++
BENU [81] Enumeration 5, 6 (some) any ✓ ✗ Distributed Java
JESSE [49, 48, 50] Matrix any 1 (Node) ✗ ✓ Serial Java
DISC (ours) Decomposition any any ✓ ✓ Distributed Scala

Table 3: The Total # of Matches for the 11 4-Node Graphs
The Total # of Matches The # of Matches Enumerated

Dataset # Ind-Matches # Ind-Iso # Homo Enum JESSE DIST DISC

WB 3.9× 1014 2.30 × 1015 2.30× 1015 3.9× 1014 2.0× 1011 9.1× 1011 1.4× 1011

AS 9.3× 1013 5.83 × 1014 5.84× 1014 9.3× 1013 1.1× 1011 2.5× 1011 6.9× 1010

LJ 8.9× 1012 4.58 × 1013 4.59× 1013 8.9× 1012 5.2× 1010 3.1× 1011 2.8× 1011

OK 1.2× 1014 6.46 × 1014 6.47× 1014 1.2× 1014 3.2× 1011 1.7× 1012 2.8× 1011

UK 2.0× 1015 1.20 × 1016 1.20× 1016 2.0× 1015 1.4× 1012 1.5× 1013 4.2× 1012

of combinations with 2 node orbits selected, assuming that
the 2 nodes are connected by an edge in p. The fourth
row shows the number of combinations with 3 node orbits
selected assuming the 3 node orbits form a triangle in p.
And the last row shows the number of patterns with any 2
nodes selected as orbits. It is important to note that the
number of orbits can be larger than 2, and the value of k for
a k-node pattern graph can be larger than 7.

3. THE EXISTING APPROACHES
In a recent survey on subgraph counting [63], Ribeiro et al.

categorized subgraph counting approaches into enumeration-
based, matrix-based, and decomposition-based approaches.
To be specific, (i) an enumeration-based approach is by
name to count by enumerating all matches of a pattern
graph p in a data graph G; (ii) a matrix-based approach
is to count a collection P of pattern graphs by enumerating
a subset of P and obtaining the remaining counts by solving
linear equations; and (iii) a decomposition-based approach
is to count by decomposing p into smaller graphs.

We list some representative approaches in Table 2, all of
which are to handle (induced) subgraph counting. We shall
discuss them in the following 7 aspects: (1) Approach: This
column shows the category an approach belongs to. (2) k-
graph: This column shows the connected k-node pattern
graphs (p) that an approach is able to handle. (3) Orbit :
This column is about the orbit (o) an approach is able to deal
with. An approach that handles edge orbits (e.g., ECLOG)
is different from an approach for node orbits (e.g., ORCA,
EVOKE, ECLOG, BENU). They count different things. Note
that PTE can only support 1 out of 2 3-node pattern graphs;
ECLOG supports 32 out of 57 5-node pattern graphs with
edge orbits; and BENU supports only 4 out of 21 5-node
pattern graphs and 5 out of 112 6-node pattern graphs. (4)
Flexible? : This column indicates whether all k-node pat-
tern graphs allowed need to be computed altogether or not.
DIST, ORCA, EVOKE, ECLOG, and JESSE must compute
all possible k-node pattern graphs at the same time. That
is, it cannot compute some of them selectively, even if some
patterns are not useful for applications. (5) Sharing? : This
column indicates if an approach allows sharing cost when
counting patterns. (6) Platform: This column tells the plat-
form (e.g., serial, multi-core, distributed) the approach is
developed for. (7) Lang : This aspect is about the program-
ming language used to implement the approach.

Next, we discuss the efficiency of the three approaches,
namely enumeration, matrix, and decomposition. Suppose
that we need to compute all the 11 4-node pattern graphs
with node orbit (Fig. 2) based on enumeration, JESSE (ma-
trix), DIST (decomposition), and our DISC (decomposition).

u
2

u
3

u
1

u
4

Figure 2: 11 4-Node Pattern Graphs with Node Orbit
DIST DISC

1 12

1 1

8 2

5 1

JESSE

7 4

Figure 3: Patterns Enumerated by JESSE/DIST/DISC

To count induced subgraphs by enumeration, it needs to
enumerate all the 11 4-node pattern graphs, which is costly.
Different from the enumeration approach, the patterns that
JESSE, DIST, and DISC need to enumerate are shown in
Fig. 3. As shown in Fig. 3, a pattern to be enumerated is
represented in a box with a number associated on the upper-
left which indicates how many times the pattern needs to be
enumerated for counting the 11 4-node pattern graphs. The
patterns that need to enumerate are small in size, and the
number of such patterns is much less than 11.

We show the cost of 5 datasets being tested (Table 4) in
Table 3. In Table 3, on the left, we show the total # of
matches over the 11 4-node graphs in Fig. 2. Here, “# Ind-
Matches” is the total number of induced subgraphs matched.
For example, for WB, which is a rather small graph with
1.3 × 107 edges, there exist 3.9 · 1014 matches in total. On
the right in Table 3, we show the # of matches enumerated
by enumeration (Enum), JESSE, DIST, and our DISC. For
Enum, the numbers are exactly those in the column “# of
Induced Matches”. For JESSE, DIST, and DISC, the num-
bers shown are the actual numbers of matches they need
to enumerate. For all 4-node pattern graphs, JESSE is effi-
cient, because JESSE uses an index to keep all possible 2-hop
paths. Such an index is not effective in counting a k-node
pattern for k > 4. As shown in our experimental studies,
JESSE does not perform well when k > 4.

Some remarks can be made for matrix/decomposition-
based approaches, for k > 4. All the existing approaches
have limitations to support large k. And almost all of them
are designed for a specific type of orbit (e.g., either node or-
bit or edge orbit). The main reason is due to the constraints
imposed on induced subgraph counting by subgraph isomor-
phism. We use DIST as an example to explain such con-
straints for the leftmost 4-node pattern graph, p, in Fig. 2.
At the node f(u2) in G, which u2 maps to, there must have
three edges (f(u2), f(u3)), (f(u2), f(u1)), (f(u3), f(u4)), and
there must not have edges (f(u1), f(u3)), (f(u1), f(u4)),
(f(u2), f(u4)). In addition, it needs to ensure that there
are no other matchings by homomorphism such as f(u2) 6=
f(u4), f(u1) 6= f(u4), and f(u1) 6= f(u3). It comes with
high overhead for a matrix/decomposition-based approach
to ensure such constraints. For matrix-based approaches,
they utilize the relationship among pattern graphs to re-
duce the enumeration cost. In other words, they are de-
signed to compute all k-node pattern graphs together. For
example, ECLOG [26] enumerates 14 out of 32 5-node pat-
tern graphs and computes the remaining 18 based on some
equations. ECLOG handles queries that take an edge as or-
bit (o) in a pattern graph p, and therefore it cannot be
directly applied to count 5-node pattern graphs with node
orbit. It needs effort to design a matrix-based approach
for any k > 5 and any orbit, and the effectiveness is less
observed if it is used to compute some but not all k-node
pattern graphs. For decomposition-based approaches, they

2496

u
3

u
4

u
2

u
1

p7

u
3

u
4

u
2

u
1

p6

u
3

u
4

u
2

u
1

p5

u
3

u
4

u
2

u
1

p4

u
3

u
4

u
2

u
1

p3

u
3

u
4

u
2

u
1

p2

u
3

u
4

u
2

u
1

p1

u
1

u
4

u
2

p8

u
1,

u
3
! u

1

u
2

u
3

u
1

p9

u
2,

u
4
! u

2

u
2

u
3

u
1

p10

u
1,

u
4
! u

1

u
2

u
1

p11

u
1,

u
3
! u

1

u
2,

u
4
! u

2

Figure 4: Sup(p) and Sub(p)

are flexible, since they are designed to decompose a pattern
graph p into smaller graphs, and count p by counting the
small graphs obtained. For 4-node pattern graphs, DIST

[30] enumerates the patterns listed in Fig. 3 to compute all
4-node patterns. But it does not support k > 4. EVOKE

supports k = 5, but it is difficult to extend it to k > 5, as it
deal with every pattern specifically.

4. A NEW DECOMPOSITION APPROACH
HOM queries are usually much easier to handle than ISO

and InISO queries. Indeed, unlike isomorphisms, homomor-
phisms are less restrictive in that they are not required to
be injective. For a pattern graph p and a node orbit o of
p, as will be detailed later, an InISO/ISO query Q is al-
ways systematically decomposable into a set of HOM queries
(p′ = (Vp′ , Ep′), o

′,HOM) with |Vp′ | ≤ |Vp|. Such a decom-
position involves two conversions: one from InISO to ISO

and the other from ISO to HOM. We elaborate them below.
From InISO to ISO. We first show how to reduce an InISO

query to ISO queries. To this end, consider a pattern graph
p and a node orbit o of p. Recall that an isomorphism of p
can be either induced or non-induced. Therefore, we have

|ISO(v)| = |InISO(v)|+ |❩InISO(v)| (1)

for ∀v ∈ V , where❩InISO(v) is the non-induced counterpart
of InISO(v); that is, ❩InISO(v) = {f | f is a non-induced
isomorphism of p with f(o) = v}. In order to deal with the
term |❩InISO(v)|, we introduce the notion of superP below.

Definition 4.1: (SuperP) Consider a pattern graph p =
(Vp, Ep). Let Ep = (Vp×Vp)\Ep; that is, Ep consists of the
edges in the complement of p. A superP of p is defined as a
graph that is obtainable by adding into p at least one edge

from Ep. Therefore, there are in total 2|Ep| − 1 superPs of
p. We use Sup(p) to denote the set of all superPs of p.

Example 4.1: For the pattern graph p in Fig. 1, Ep com-
prises 3 pairs, namely (u1, u4), (u1, u3) and (u2, u4). There
are seven superPs for p, which are shown in Fig. 4.

Proposition 4.1: f is a non-induced isomorphism of p iff
f is an induced isomorphism of some superP of p.

Proof: We first prove the ⇒ part. Since f is non-induced,
there exists at least one pair of nodes (u, u′) in Vp such
that the edge (u, u′) /∈ Ep but (f(u), f(u′)) ∈ E. Let S ⊆
Ep be the set of all such pairs and let p′ = (Vp, Ep ∪ S).
Then, f is an induced isomorphism of p′. Indeed, (i) f is
an isomorphism of p′ in that f is a homomorphism and is
injective; and (ii) the iso-match of p′ induced by f is an
induced subgraph of G. We next prove the ⇐ part. Let p′

be the corresponding superP. Removal of any edge from p′

makes f non-induced. Therefore, f is non-induced for p. ✷

Example 4.2: ConsiderG and p in Fig. 1. The non-induced
isomorphism {u1 → v3, u2 → v2, u3 → v1, u4 → v4} of p is
an induced isomorphism of the superP p3 (Fig. 4) of p.

According to Proposition 4.1, we have

|❩InISOp,o(v)| =
∑

p′∈Sup(p)

|InISOp′,o(v)| (2)

By combining Eq. (1) and (2), we have

|ISOp,o(v)| =
∑

p′∈{p}∪Sup(p)

|InISOp′,o(v)| (3)

Since {p}∪Sup(p) is a poset under edge inclusion, by Eq. (3)
and the Möbius inversion formula, we have

|InISOp,o(v)| =
∑

p′∈{p}∪Sup(p)

µ1(p, p
′) · |ISOp′,o(v)| (4)

where µ1(p, p
′) = (−1)|Ep′ |−|Ep| is the corresponding Möbius

function. With Eq. (4), an InISO query on p can be decom-
posed into several ISO queries on {p} ∪ Sup(p).

Example 4.3: Continuing with Example 4.1, we have

|InISOp(v)| = |ISOp(v)| − |ISOp1(v)|+ |ISOp2(v)|

− |ISOp3(v)| − |ISOp4(v)|+ |ISOp5(v)|

+ |ISOp6(v)| − |ISOp7(v)|

which works with any node orbit of p.

From ISO to HOM. We next show how to decompose an
ISO query Q = (p, o, ISO) into HOM queries. Recall that an
isomorphism is defined to be an injective homomorphism.
Hence, for a pattern graph p and a node orbit o, we have

|HOM(v)| = |ISO(v)|+ |❅❅InjHOM(v)| (5)

where❅❅InjHOM(v) = {f | f is a non-injective homomorphism
of p with f(o) = v}. By definition, for ∀f ∈ ❅❅InjHOM(v),
there exist nodes of p mapped by f to the same nodes in G.
Moreover, for the nodes in p that are mapped to the same
node in G, they must be independent since otherwise, loops
must be present in G to make f a homomorphism.

Definition 4.2: (SubP) Consider a pattern graph p =
(Vp, Ep). Let I = {I1, I2, . . . , Ik} be a partition of Vp such
that for ∀i ∈ [1, k], Ii is an independent set of p; that is,
there does not exist an edge in p between any two nodes
of Ii. A subP graph p′ = (Vp′ , Ep′), induced by I, of p is
defined as follows: (i) k < |Vp|; (ii) p

′ has exactly k nodes;
specifically, Vp′ = {w1, w2, . . . , wk} with wi corresponding
to Ii; and (iii) there is an edge between wi and wj if and
only if there is an edge in p between some node of Ii and
some node of Ij . For notational convenience, we also use
wi to denote the corresponding Ii of wi. Moreover, we use
o(p′) to denote the node w ∈ Vp′ that contains the orbit o.
We denote the set of all subPs of p by Sub(p).

Example 4.4: Fig. 4 shows Sub(p) for the pattern graph
p in Fig. 1. Specifically, the subPs p8, p9, p10 and p11
are induced by the partitions I1 = {{u1, u3}, {u2}, {u4}},
I2 = {{u2, u4}, {u1}, {u3}}, I3 = {{u1, u4}, {u2}, {u3}},
and I4 = {{u1, u3}, {u2, u4}}, respectively. In addition, if
the node orbit o of p is u2, then o(p8) and o(p9) refer to the
node {u2} in p8 and {u2, u4} in p9, respectively.

Proposition 4.2: For pattern graph p and orbit o, we have

|❅❅InjHOMp,o(v)| =
∑

p′∈Sub(p)

|ISOp′,o(p′)(v)|

Proof: We first prove the ≤ part. Consider a homomor-
phism f ∈ ❅❅InjHOMp,o(v). By definition, f is non-injective
and maps o to v. Let Rf = {v1, v2, . . . , vk} be the range of
f , i.e., Rf = {f(u) | u ∈ Vp}. We have |Rf | = k < |Vp|
because f is non-injective. For each vi ∈ Rf , let Ii = {u ∈
Vp | vi = f(u)} be the set of nodes in p that are mapped by

2497

f to vi. It is easy to see that Ii’s are all independent sets and
constitute a partition of Vp. Let If = {I1, I2, . . . , Ik} and
pf = (Vpf , Epf) be the subP of p induced by If . We further

define a function f ′ from Vpf to Rf such that for any node

w in pf , f
′(w) = f(u), where u is any node contained in w.

In this way, we make f ′ an isomorphism of pf that maps
o(pf) to v. Indeed, by construction, (i) f ′ is an injective
homomorphism of pf ; and (ii) f ′(o(pf)) = f(o) = v. It is
worth pointing out that our mapping described above from
f to a pair (pf , f

′) is injective. As a result, we have

|❅❅InjHOMp,o(v)| ≤
∑

p′∈Sub(p)

|ISOp′,o(p′)(v)|

We next prove the ≥ part. Let f ′ be an isomorphism of
a subP p′ of p that maps o(p′) to v. We construct f such
that for ∀u ∈ Vp, f(u) = f ′(w) where w is the node in
p′ containing u. This f can be easily shown to be a non-
injective homomorphism of p. Moreover, f(o) = f ′(o(p′)) =
v. Because the mapping above from (p′, f ′) to f is injective,

|❅❅InjHOMp,o(v)| ≥
∑

p′∈Sub(p)

|ISOp′,o(p′)(v)|

By the two inequalities above, the proposition is proved. ✷

By Eq. (5) and Proposition 4.2, we have

|HOMp,o(v)| =
∑

p′∈{p}∪Sub(p)

|ISOp′,o(p′)(v)| (6)

To solve this equation, we define a partial order ≤ over
{p} ∪ Sub(p) such that for any p′ and p′′ in {p} ∪ Sub(p),
p′ ≤ p′′ if and only if either p′′ is exactly p′ or p′′ is a subP
of p′. As a result, for the poset ({p}∪Sub(p),≤), an interval
[p, p′] = {p′′ | p ≤ p′′ ≤ p′} is essentially a product of parti-
tion lattices. Therefore, its corresponding Möbius function
is µ2(p, p

′) =
∏

I∈I(−1)|I|−1(|I | − 1)!, where I is the cor-
responding partition for p′. Particularly, µ2(p, p) = 1. By
Eq. (6) and the Möbius inversion formula, we have

|ISOp,o(v)| =
∑

p′∈{p}∪Sub(p)

µ2(p, p
′) · |HOMp′,o(p′)(v)| (7)

Example 4.5: Continuing with Example 4.4, we have

|ISOp(v)| = |HOMp(v)| − |HOMp8(v)| − |HOMp9(v)|

− |HOMp10(v)|+ |HOMp11(v)|

which works with any node orbit of p.

Putting It All Together. By applying Eq. (7) to each
term on the right-hand side of Eq. (4), we can obtain a
formula of the following form to evaluate |InISOp,o(v)|:

|InISOp,o(v)| =
∑

p′∈Enum(p)

αp′ · |HOMp′,o(p′)(v)| (8)

where αp′ is the corresponding coefficient for p′ and Enum(p)
contains all the graphs whose coefficients are non-zero.

5. HOMOMORPHISM COUNTING BY RE

LATIONAL ALGEBRA
As shown in Section 4, an InISO/ISO query is always de-

composable into a collection of HOM queries in the form of
linear combination. In light of this fact, in this section, for a
pattern graph p, a node orbit o and a node v ∈ V , we show

u1 u2 u3 u4

v5 v6 v5 v4
v5 v6 v5 v6
· · · · · · · · · · · ·

Figure 5: RHOM

o C

v6 2
v5 6
· · · · · ·

Figure 6: Rp

how to systematically evaluate |HOMp,o(v)| by relational al-
gebra, irrespective of |Vp|.

Suppose that the undirected data graph G is maintained
in a relation RG(from, to) with two attributes from and
to such that for each edge (v, v′) of G, there are two tuples
(v, v′) and (v′, v) in RG. For each edge ei = (u, u′) of p,
let relation Ri(u, u

′) with attributes u and u′ be a virtual
copy of RG. It is easy to verify that every tuple of Ri essen-
tially corresponds to a homomorphism of ei. Thus, for each
tuple (v, v′) in Ri, the mapping f = (u → v, u′ → v′) is a
homomorphism of ei = (u, u′). To this end, all the homo-
morphisms of p can be obtained by conducting a series of
natural joins on R1, R2, . . . , R|Ep| [51, 13, 41]. Specifically,
let

RHOM = R1 ⊲⊳ R2 ⊲⊳ · · · ⊲⊳ R|Ep| (9)

Then, by construction, (i) RHOM has |Vp| attributes, one for
each node in Vp; and (ii) RHOM contains all and only the
homomorphism of p. With RHOM at hand, we can compute
|HOMp,o(v)| for all nodes v in G as follows:

Rp(o, C) = oΥcount(∗)→C(RHOM) (10)

Here, oΥF→A(·) is to apply the aggregate function F to each
group partitioned according to the group-by attribute o and
name the column corresponding to F as A. The resulting re-
lation Rp contains two columns, o for the nodes v in G and C
for their corresponding homomorphism counts |HOMp,o(v)|.
If a node v is not present in Rp, then |HOMp,o(v)| = 0.

Example 5.1: There are 3 edges in the pattern graph p
(Fig. 1), namely e1 = (u1, u2), e2 = (u2, u3) and e3 =
(u3, u4). Accordingly, we have 3 relations with schemas
R1(u1, u2), R2(u2, u3) and R3(u3, u4). We show RHOM =
R1 ⊲⊳ R2 ⊲⊳ R3, which contains the homomorphisms of p,
in Fig. 5. With u2 as the orbit, Rp = u2

Υcount(∗)(RHOM) is
shown in Fig. 6, recording for each v its |HOMp,u2

(v)|.

As discussed above, we can obtain Rp′(o, C) for every pat-
tern graph p′ in Enum(p) by Eq. (9) and Eq. (10). To show
how to compute Eq. (8), for easy discussion, we define two
relational operators.

Definition 5.1: Let R(o, C) and R′(o, C) be two relations,
both with attributes o and C. (i) The ψα(·) operator: ψα(R)
makes a copy of R and multiplies all the values of column
C by α. (ii) The

⊎

operator: R
⊎

R′ is defined as

R
⊎

R′ = oΥsum(C)→C(R ∪R′)

Here, we assume the union operator ∪ keeps duplicates.

With the two operators, namely ψα and
⊎

, we compute
Eq. (8) for all nodes in G by Eq. (11).

⊎

p′∈Enum(p)

ψαp′
(Rp′) (11)

6. DISTRIBUTED PROCESSING
There are many approaches proposed to process join query

in a distributed system over a cluster of servers. The state-
of-the-art approach we adopt is HCubeJoin [22], which out-
performs multi-round binary joins [41] due to free of shuffling

2498

on intermediate results. HCubeJoin is a one-round multi-join
approach built on two algorithms, namely HCube [6, 16] and
Leapfrog [78]. Here, HCube is a one-round communication
optimal shuffling method that shuffles data to every server
in the cluster. The main idea is to divide the output of a
join query Q into cubes, and assign a cube to one of the
servers to process by hashing. The assignment minimizes
the communication cost with respect to the constraints of
input database D, the join query Q, and the memory budget
M on one server to hold both input tuples and the partial
result of Q in memory. HCube is proven in theory to be the
optimal in worst-case sense for transmitting the tuples to
servers such that each server can evaluate the query without
further data exchange. Leapfrog is a fast in-memory sequen-
tial multi-join algorithm to process the join query at each
server over the data shuffled to it, based on the attribute
order among the attributes of Q using iterators. Leapfrog

is proven in theory to be the optimal method in worst-case
sense to evaluate a join query Q, following AGM bound [14].

The problem we study is local subgraph counting, where
additional group-by and aggregation are needed with joins.
A naive approach is to enhance HCubeJoin by computing
additional group-by and aggregation together with joins. In
other words, we process group-by and aggregation while pro-
cessing the underneath join together. However, such an ap-
proach is not efficient. First, HCube is a one-round commu-
nication optimal shuffling method assuming large intermedi-
ate results for joins. It does not consider how to reduce the
communication cost when dealing with group-by and aggre-
gation, which may result in small intermediate results. Sec-
ond, Leapfrog processes a multi-join based on the attribute
order among the attributes of Q using iterators. However,
the group-by and aggregation blocks the pipeline mecha-
nism behind Leapfrog as it needs to compute the group-by
and aggregation completely before the next join. Note that
the group-by and aggregation results can also be large. It
has significant impacts on Leapfrog. In this paper, to the
first, as the intermediate results can be possibly small with
group-by and aggregation, we study a multi-round commu-
nication method to significantly reduce the communication
cost of the one-round HCube. To the second, we investi-
gate a new attribute order to facilitate group-by and ag-
gregation computing in Leapfrog, and give a cache-oblivious
approach to reduce the group-by and aggregation comput-
ing in a pipeline fashion. Note that previously it will block
Leapfrog if it needs to store the group-by and aggregation
results.

Below, for a HOM query p, in Section 6.1, first we discuss
how to push the group-by and aggregation over a join tree
for p, by representing p as a join tree using tree decompo-
sition. The tree decomposition also improves efficiency in
general. Second, we discuss multi-round HCubeJoin for p in
Section 6.2 aiming at minimization of communication cost.
Third, we discuss how to support join with group-by and
aggregation in Leapfrog by pipeline in Section 6.3.

6.1 Pushing Aggregation over Joins
As the join cost will be the dominating factor, to reduce

the intermediate results, we push group-by and aggregation
down as much as possible, instead of computing group-by
and aggregation after joins (Eq. (9) and Eq. (10)). We adopt
the work in [83], which pushes group-by and aggregations
over joins for an acyclic join query. In doing so, we convert

u
2

u
1

u
3

u
4

Graph HyperGraph

u
2

u
1

u
3

u
4

GHD

Figure 7: Hypergraph and GHD Decomposition

a cyclic join query to a join tree based on generalized hy-
pertree decomposition (GHD) [32]. We introduce GHD and
pushing aggregation over joins below in brief, and give the
complexity.
Finding a Join Tree. GHD is the state-of-the-art approach
for tree decomposition. As the name implies, it is done over
a hypertrophy representation of a join query. Formally, for
a join query R1 ⊲⊳ R2 ⊲⊳ · · · ⊲⊳ Rk on k relations, its hyper-
graph H(VH, EH), is defined as follows: (i) VH contains the
attributes of the k relations; (ii) for each Ri, EH contains a
hyperedge ei connecting the attributes of Ri; and (iii) EH

contains no other hyperedges. For Eq. (9), its hypergraph is
exactly p. GHD decomposes the hypergraph p into several
smaller subqueries and obtains the final result by combining
the results of those subqueries. In a nutshell, a GHD of p is a
triple (T , χ, λ) where T = (VT , ET) is a tree. For each tree
node τ of T , it is required that χ(τ) ⊆ Vp and λ(τ) ⊆ Ep;
that is, each tree node τ is associated with a set of relations
(one for each edge in λ(τ)) and a set of attributes attrs(τ)
(one for each node in χ(τ)). The labeling functions χ(·) and
λ(·) are not arbitrary. Specifically, they need to meet the
following requirements for GHD and later aggregation push-
down: (1) every node of p is contained in some tree node of
T ; that is,

⋃

τ∈VT
χ(τ) = Vp; (2) for each edge (u, u′) of p,

there exists a tree node τ such that {u, u′} ⊆ χ(τ); (3) for
each node u of p, the tree nodes τ with u ∈ χ(τ) are con-
nected in T ; (4) for each tree node τ , every node u ∈ χ(τ)
is contained in some edge e ∈ λ(τ); and (5) for aggregation
push-down, there exists a tree node τ whose χ(τ) fully con-
tains the orbit o. We make T rooted by selecting a tree node
τ whose χ(τ) contains the orbit o as the root root(T).

Example 6.1: In Fig. 7, we show one GHD (T , χ, λ) for the
hypergraph p. The hypertree T contains only two nodes,
namely τ1 and τ2. Inside each τi, the corresponding χ(τi)
and λ(τi) are shown. We can easily verify that both χ(·)
and λ(·) satisfy the requirements mentioned above. In par-
ticular, each hyperedge of p appears in at least one node. In
other words, the relations are distributed among the nodes.
τ1 is selected as the root because it contains the orbit u2.

Let rel(τ) be the result of joining the relations in τ . The
joins in Eq. (9) can be reduced to joins on rel(τ)’s.

R1 ⊲⊳ R2 ⊲⊳ · · · ⊲⊳ R|Ep| = ⊲⊳τ rel(τ) (12)

Here, the joins on rel(τ)’s are acyclic and can be efficiently
computed in a bottom-up manner. Specifically, let Tτ be
the subtree of T rooted at τ and let rel(Tτ) be the result of
joining the rel(τ ′)’s of the descendants τ ′ of τ . ⊲⊳τ rel(τ) =
rel(T) can be evaluated recursively as follows. If τ is a leaf,

rel(Tτ) = rel(τ) (13)

Otherwise, given that τ1, . . . , τk are the children of τ ,

rel(Tτ) = rel(τ) ⊲⊳ rel(Tτ1) ⊲⊳ · · · ⊲⊳ rel(Tτk) (14)

Example 6.2: Consider Fig. 7. Suppose e1 = (u1, u2),
e2 = (u2, u3), e3 = (u3, u4) and e4 = (u4, u1). Then, we
have rel(τ1) = R1 ⊲⊳ R2 and rel(τ2) = R3 ⊲⊳ R4.

2499

!u
1
,u

3 count()->C
1*

⋈

!u
2 sum(C

1
)->C

⋈

R
4

R
3

⋈

R
2

R
1

(a) One-round

!u
1
,u

3 count()-> C
1*

⋈

!u
2 sum(C

1
)->C

⋈

R
4

R
3

⋈

R
2

R
1

5
1

5
2

(b) Multi-round

Figure 8: One-round vs. Multi-round HCube

Pushing Aggregation over Joins. With [83], we push
down group-by and aggregation by Eq. (15) and Eq. (16)
for Eq. (13) and Eq. (14), respectively.

rel(Tτ) = AτΥcount(∗)→C(rel(τ)) (15)

rel(Tτ) = AτΥsum(C1∗···∗Ck)→C(

rel(τ) ⊲⊳ ρC→C1
(rel(Tτ1)) ⊲⊳

· · · ⊲⊳ ρC→Ck
(rel(Tτk))) (16)

Here, the rename operator ρA→B renames A as B. The
main idea behind is as follows. Since not all attributes of
rel(Tτ) are needed in the bottom-up computation, let τ ′ be
the parent of τ , it suffices to only keep the columns Aτ of
rel(Tτ), where Aτ = attrs(τ) ∩ attrs(τ ′) for non-root nodes
and = {o} for root(T). This is due to the requirement (3)
of a GHD that an attribute in attrs(τ) \ attrs(τ ′) does not
appear in any tree node of T except those in the subtree Tτ .

Example 6.3: Let us continue with Example 6.2. Because
attrs(τ1) = {u1, u2, u3} and attrs(τ2) = {u1, u3, u4}, we have
Aτ2 = attrs(τ1) ∩ attrs(τ2) = {u1, u3}. Moreover, since the
orbit is u2, Aτ1 = {u2}. The resulting query processing plan
after pushing down aggregation is shown in Fig. 8(a).

Complexity Analysis. We give a complexity analysis of
the recursive Eq. (15) and Eq. (16). Given a GHD (T =
(VT , ET), χ, λ) for p, the total cost can be partitioned into
two parts: (i) the cost to evaluate rel(τ) for each tree node
τ ∈ VT and (ii) the cost to evaluate the joins along the tree
edges, i.e., the joins between a node and its children.

With fractional hypertree width [32], for our GHD (T , χ, λ),
its fractional hypertree width, denoted by fhw, is the min-
imum real number such that every tree node has a frac-
tional edge cover of weight fhw. Recall that the relations
Ri all have size 2m. For each tree node τ , since its frac-
tional edge cover is bounded by fhw, by [14] the size of
rel(τ) is bounded by (2m)fhw. Furthermore, it requires only
O((2m)fhw) time to evaluate rel(τ) using an algorithm (e.g.,
Leapfrog [78]). Therefore, the cost to evaluate all rel(τ)’s is
O
(

|VT | · (2m)fhw
)

. As for the cost to evaluate the joins along
the tree edges, there are |ET | such joins. And each such
join is conducted on two relations of size at most (2m)fhw.
Hence, each of the joins takes O((2m)fhw) time, resulting in
O
(

|ET | · (2m)fhw
)

total time. Ours takes O
(

|Vp| · (2m)fhw
)

time, where we use the facts |ET | = |VT |−1 and |VT | ≤ |Vp|.
By brute-force enumeration, we find that for any pattern

graph p with |Vp| ≤ 7, there always exists a generalized hy-
pertree decomposition with fhw as small as |Vp|/2. There-
fore, for any small graph p with node orbit o, its local ho-
momorphism counts are computable in O(m|Vp|/2) time.

6.2 MultiRound HCubeJoin
In this section, we focus on minimizing communication

cost of the one-round HCubeJoin. The one-round HCubeJoin

shuffles input relations over servers once (Fig. 8(a)), whereas

! sum(C
1
*…*C

k
)->CA"

⋈

rel(")

Iterator-0

… ! sum(…)->C
k

A"
k

Iterator-k
! sum(…)->C

2
A"

2

Iterator-2
! sum(…)->C

1
A"

1

Iterator-1

Figure 9: Iterators of Leapfrog with Aggregation

a multi-round HCubeJoin we propose will shuffle data multi-
ple times (3 times in Fig. 8(b)), if it can further reduce the
communication cost.

First, we explain the high communication cost of one-
round HCubeJoin, or precisely HCube. Such a cost is related
to how many duplications of every input relation to be dis-
tributed over servers in a one-round manner, regarding the
given query p [6]. It is to minimize

cost(p) =
∑

Ri∈p

|Ri| × d(Ri, φ) (17)

Here, Ri is an input relation, and d(R,φ) is a duplication ra-
tio to duplicate Ri as d(R,φ) =

∏

A∈attrs(p)\attrs(Ri)
φA, where

φA is the number of partitions for attribute A to be dupli-
cated on servers. In brief, a complex join query p with more
attributes tends to result in a larger duplication ratio, which
in return results in high communication cost.

With additional group-by and aggregation, multi-round
HCube can significantly reduce the cost for two reasons: the
input relation (e.g., the intermediate group-by and aggre-
gation results) can be possibly small, and the intermediate
input query can be small with less number of attributes in-
volved as shown in Fig. 8(b).

The optimization problem here, based on Eq. (17), be-
comes how to cut the query (e.g., Fig. 8(a)) into smaller
sub-queries so that the total communication cost for all sub-
queries divided is the smallest. However, this needs to ex-
plore all possible combination of cuts of the query with an
estimation of the intermediate results, and it is difficult to
get an accurate estimation without overhead. We adopt a
heuristic to decide where to cut based on the size of an inter-
mediate result referring to Eq. (15) and Eq. (16). Consider
the group-by attributes (Aτ) of rel(Tτ) for a subtree Tτ of T .
The size of rel(Tτ) is the size of the join over the relations
in rel(Tτ) that contain at least one attribute in Aτ . The
size of the latter is bounded by O(m) either when |Aτ | = 1
or when |Aτ | = 2 where a relation in Tτ contains all Aτ ,
following AGM bound [14]. Note that all relations in our
setting are of 2 attributes and a relation is at most 2m for
an undirected graph with m edges. Otherwise, the size of
Tτ will be at least O(m2) that cannot be a candidate to cut,
since it will result in large communication cost in the next
round. As an indicator, for 74 of HOM queries with 1 node
orbit (e.g., 2nd row in Table ?? for k ≤ 5), almost all can
be cut into smaller queries. We confirm the efficiency in our
experimental studies.

6.3 Leapfrog: Join with Aggregation
Leapfrog is an in-memory algorithm to process joins in a

pipeline fashion by expanding attributes one-by-one based
on an attribute order using iterators, where all input rela-
tions are in memory and there is no I/O cost. We call the
attribute order as the j-order, since it is to minimize the join
cost. Consider the three joins · · ·R1(u1, u2) ⊲⊳ R2(u2, u3) ⊲⊳
R3(u3, u4) ⊲⊳ R4(u1, u4) · · · in a join query. A possible j-
order is u2 ≺ u1 ≺ u3 ≺ u4. There are two implications
by a j-order. First, all relations are sorted following the j-
order. For example, R1(u1, u2) is sorted by u2 followed by

2500

u1 since u2 ≺ u1. Second, Leapfrog will extend an attribute
following the order. In other words, to extend from an at-
tribute ui to the immediate next attribute uj by the j-order
is: both the intermediate result with ui extended and the
next relation have uj to join. This condition is to avoid
Cartesian product. With a j-order, Leapfrog uses iterators
to join. Conceptually an iterator iter(ui) is created for every
attribute ui in a pipeline fashion: iter(ui) calls iter(uj) with
a specific ui value, and iter(uj) will return tuples to iter(ui)
that can join with the specific ui value in pipeline.

The question is how to support additional group-by and
aggregation with the fast Leapfrog algorithm in a pipeline
fashion. It is important to note that group-by and aggrega-
tion block such pipeline. Consider the following query,

· · · (R1 ⊲⊳ R2) ⊲⊳ (u1,u3)Υsum(·)(R3 ⊲⊳ R4) · · ·

which is a simplification referring to Eq. (16). By blocking,

(u1,u3)Υsum(·)(R3 ⊲⊳ R4) (or (u1,u3)Υsum(·)) needs to be com-
pleted first before the next joins. We explore a way following
the pipeline mechanism in Leapfrog without blocking, and
we find a correct way to do so, which is to do J-iter before
A-iter. We explain it based on Eq. (16). Here, the A-iter
is the iterator for rel(Tτ) on the left side, as it is to group
Aτ attributes followed by aggregation, and the J-iter is the
iterator for rel(τ). Note that rel(Tτi) will appear at the left
side of the equation when it is called in the same manner.
Following Eq. (16), in pipeline, it gets a tuple t ∈ rel(τ)
by the J-iter to request the count for ρC→C1

(rel(Tτ1)), ...,
ρC→Ck

(rel(Tτk)) that can join the tuple t. By this, we make
J-iter before A-iter without blocking, as A-iters have a tar-
get to compute count for a given tuple t. Otherwise, it needs
to compute all counts for all groups by A-iters, which cannot
be done by pipeline without blocking. As there is a need
to compute group by group using iterators, we extend at-
tributes by a collection of attributes at once using iterators
in the modified Leapfrog.

It is important to note that the attribute order to pro-
cess group-by and aggregation by iterations efficiently may
not be consistent with the j-order used in Leapfrog. As the
example above, in the A-iter, the group-by attributes are
(u1, u3). This requests that the attribute from the other it-
erators beforehand shall put (u1, u3) as the first attributes
in the attribute order, which we call the g-order. The reason
is that, if the two group-by attributes are sorted as the first
2 attributes in order, one group of (u1, u3) will be passed
to the A-iter at most once. In our modified Leapfrog, we
attempt to find an attribute order that satisfies both j-order
and g-order. If we cannot find such an order, we put j-order
at a higher priority. We will also use a cache to cache the
count for a group (e.g., (u1, u3)), if the order is not g-order.

In Fig. 9, we sketch how to build up iterators in the mod-
ified Leapfrog according to Eq. (16). The Iterator-0 will
generate groups with rel(τ), and pass the groups to other it-
erators to get their aggregation values. With the aggregation
values collected, the Iterator-0 will compute its aggregation.
Consider the following example,

· · ·u2
Υsum(·)((R1 ⊲⊳ R2) ⊲⊳ (u1,u3)Υsum(·)((R3 ⊲⊳ R4)) · · ·

rel(τ) corresponds to R1 ⊲⊳ R2, Iterator-1 corresponds to

(u1,u3)Υsum(·)(R3 ⊲⊳ R4), and Iterator-0 is to compute u2
Υsum(·).

We confirm the efficiency of the new pipelined Leapfrog

with aggregation in the experimental studies.

6.4 The Distributed System
We have implemented a distributed system, called DISC,

on top of Spark, to process a batch of induced subgraph
counting queries, Q, over a data graph G. Here, a data
graph G is stored in an edge table RG(from, to), and a
counting query in Q is in the form of Q = (p, o, t), where p
is a graph, o is an orbit of p, and t is a query type (either
InSubG for induced subgraph counting or SubG for subgraph
counting).

In DISC system, for each Q = (p, o, InSubG) in Q, we
generate its query plan J in two parts (a) and (b) as follows.
In (a), for each pattern graph p′ in Enum(p), we obtain the
pair of (αp′ , p

′) with its join plan to evaluate p′ regarding
Eq. (9) and Eq. (10). In (b), with the set of such pairs in
(a), we further have a plan to evaluate Q by Eq. (11). After
we have all the plans for all Q in Q, we evaluate them in
two main steps. In the first step, we evaluate the part (a)
for every query plan J for Q ∈ Q. In evaluating (αp′ , p

′) in
(a) for J, we keep its result in a relation Rp′ , together with
αp′ . In the second step, we evaluate the part (b) for every
counting queryQ with the results stored. In this way, we can
share the computing cost as many p′ are common in counting
queries. Due to the space limit, we omit such discussion. We
implement the part (a) by ourselves together with Spark-

SQL on top of Spark, which includes the implementation of
the multi-round HCubeJoin and the modified Leapfrog with
aggregation. The part (b) can be supported by Spark-SQL.

7. RELATED WORK
Global Subgraph Counting. Global subgraph counting
is to count the number of the subgraphs being matched in
an entire graph. There are exact/approximate approaches.
The exact approach ESCAPE [59] can process 5-node pat-
terns, whereas the approximate approach MOTIVO [21] can
handle up to 10-node patterns. Various estimation strategies
have been explored for approximate counting such as path
sampling [42, 80], color coding [21, 19, 20], and random walk
[79, 70, 84]. It is worth noting that global subgraph count-
ing can be solved by local subgraph counting, but not vice
versa.
Local Subgraph Counting. Local subgraph counting has
been studied for certain patterns with specific orbits on large
networks. For local subgraph counting with 1 node orbit,
Ahmed et al. [9] propose a multi-core algorithm for exac-
t/approximate counting for 3/4-node patterns, while Elen-
berg et al. [29, 30] study exact/approximate counting for
3/4-node patterns in a distributed environment. Hocevar
et al. [38, 39] propose a matrix-based method for 5-node
patterns, while Pashanasangi et al. in [58] propose the
decomposition-based method for 5-node patterns. Melcken-
beeck et al. [49, 48, 50] explore the general approach to han-
dle k-node patterns by generalizing the idea of [38]. For local
subgraph counting with 1 edge orbit, Ahmed et al. [10, 26]
explore the methods for selected 3/4/5-node patterns. Also,
there are works that focus on local subgraph counting for di-
rected graph [56] and heterogeneous graph [64, 67]. Almost
all previous works focus on specific patterns with specific
orbits. In contrast, we study a general decomposition-based
approach for patterns with different orbits.
Subgraph Enumeration in Native Graph Systems.

Subgraph enumeration is to enumerate all matches by sub-
graph isomorphism (homomorphism) of a pattern, p, in a

2501

Table 4: 9 Datasets.
Datasets |V| |E| Deg Source

AC (AC-caida) 2.6 × 104 1.1× 105 4.0 [1]
TP (Topology) 3.5 × 104 2.2× 105 6.2 [1]
RC (Reactcome) 6.3 × 103 2.9× 105 46.2 [1]
FB (Facebook) 6.4 × 104 1.6× 106 25.6 [1]

WB (web-BerkStan) 6.9 × 105 1.3× 107 19.4 [3]
AS (as-Skitter) 1.7 × 106 2.2× 107 13.1 [3]
LJ (soc-LiveJournal) 4.8 × 106 8.6× 107 17.7 [3]
OK (com-Orkut) 3.1 × 106 2.3× 108 76.3 [3]
UK (uk-2002) 1.9 × 107 5.2× 108 28.3 [2]

DIST

BENU

ECLOG

PTE

1

JESSE

1-58

1-32

1-11

…

…

1-12

Figure 10: 114 Queries

graph G, and can be used to deal with subgraph (homomor-
phism) counting. There are single machine approaches [44,
73]. We focus on distributed approaches. The approaches
in [74, 45, 46] decompose a pattern graph into specific sub-
patterns. Such sub-patterns over a graph are pre-computed
and then assembled one-by-one. Assembling produces over-
whelming amount of intermediate results. The approaches
in [62, 81] decompose a pattern graph into a core surrounded
by leaves. The core and all leaves are assembled together
that does not produce any intermediate results. These de-
composition methods are optimized towards reducing the
enumeration cost and intermediate sizes, which may not be
compatible with the optimization for aggregation. DISC is
optimized towards lowering the overall cost of join and ag-
gregation.
Multi-join & Aggregation. Optimizing join queries has
been studied for decades. Traditional, it is to compute a se-
quence of binary joins [71]. The AGM bound [14, 35] on the
worst-case output size of a multi-join provides a standard to
evaluate the computation efficiency of a join algorithm. In
the worst-case, the approach of computing a sequence of
binary joins becomes sub-optimal, and the worst-case op-
timal join algorithms such as NPRR [53], GenericJoin [54],
Leapfrog [78] are optimal. In [4, 43, 77], the worst-case opti-
mal join is combined with binary join based on the guidance
of tree decomposition [33, 32] to achieve lower complexity.
For distributed multi-join processing, it is known that the
multi-round of binary joins [41] to process a join query for
homomorphism enumeration result in overwhelming com-
munication cost in [22]. For a join query that contains ag-
gregate over join, [83] pushes down the aggregate partially.
The similar idea is applied in factorized database [15], and
is generalized to functional aggregate query [5]. Previous
works focus on solving join query in distributed environ-
ment or join-aggregate query on single machine, while DISC

is optimized towards evaluating join-aggregate query in dis-
tributed environment.

8. EXPERIMENTS
We compare our DISC with the state-of-the-art distributed

and multi-core enumeration-based (PTE [57] and BENU [81]),
matrix-based (ECLOG [26]) and decomposition-based (DIST
[30]) approaches. In addition, we compare DISC with JESSE

[48, 50], which is a single machine approach, since it is the

(a) Multi-Round HCube (b) Leapfrog-Agg

Figure 11: Distributed Optimizations

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

speed up

q1

(a) 3-node query

 2
 4
 6
 8

 10
 12
 14
 16

 2 4 6 8 10 12 14 16

speed up

q1
q2

q3
q4

(b) 4-node query

 2
 4
 6
 8

 10
 12
 14
 16

 2 4 6 8 10 12 14 16

speed up

q1
q2

q3
q4

(c) 5-node query

Figure 12: DISC: Scalability

10
8

10
10

10
12

10
14

10
16

10
18

4 5 6 8 10

(a) k-edges

10
8

10
10

10
12

10
14

10
16

10
18

10
20

2 3 4 5 6

(b) k-stars

10
8

10
10

10
12

10
14

10
16

2 3 4 5 6

(c) k-cliques

Figure 13: Pattern Scalability

only general approach that can handle any k-node graphs
with node orbits. The details can be found in Table 2. We
used the code obtained from the authors and used their de-
fault parameters. It is worth noting that ECLOG, BENU

and DIST were developed in C++, whereas DISC was im-
plemented in Scala on top of the widely-used Spark. All ex-
periments were conducted on a cluster consisting of a master
server and 7 slave servers (2× Intel Xeon E5-2680 v4, 176
gigabytes of memory, interconnected via 10 gigabytes Ether-
net). We used Spark 2.4.3, Hadoop 2.7.2, and PowerGraph

2.2. The experiments that involve only a single machine
were conducted on one of the slave servers. We used wall
clock time to evaluate the approaches, excluding the time of
starting up the system and loading data. When presenting
results, we use the notation “> t” if an approach failed after
t seconds.
9 Datasets: We use 9 datasets used in the prior works from
a variety of domains including internet topology networks,
protein–protein interactions networks, social networks, and
web graphs. We show the statistics of the 9 datasets in
Table 4, where Deg is the average degree of the graph, Deg =
|E|/|V|. We divide the datasets into two groups by the size.
The group-1 consists of AC, TP, RC and FB used in single
machine experiments. The group-2 consists of WB, AS, LJ,
OK and UK used for distributed processing.
114 Queries: We test all 114 queries used in previous work.
The queries are divided into 5 named query sets (PTE, DIST,
BENU, ECLOG, JESSE) whose representative queries are
listed in Fig. 10. For each query set, we number the queries
as q1, q2, · · · , from the left. Here, ECLOG and JESSE query
set includes all 5-node queries with a local edge orbit (all
nodes are connected to orbit edge) and a node orbit respec-
tively. We compare the approaches using the query sets that
are used in their own experiments.

2502

10
1

10
2

10
3

q17 q22 q24 q29 q33 q38 Selected All

time(sec)

AC TP RC TW

Figure 14: Selected vs. All

10
2

10
3

10
4

WB AS LJ OK UK

time(sec)

(a) DISC queries

10
2

10
3

10
4

AC TP RC FB

time(sec)

(b) ECLOG queries

10
3

10
4

AC TP RC FB

time(sec)

(c) JESSE queries

Figure 15: DISC: Sharing

90%

92%

94%

96%

98%

100%

Fail

WB AS LJ OK UK

percentage

(a) q1 on 5 datasets

90%

92%

94%

96%

98%

100%

Fail

q1 q2 q3 q4

percentage

(b) 4 queries on LJ

Figure 16: Checking Cost

Table 5: JESSE vs DISC.
Enumerated Matches (×109) Elapse Time (seconds)

Dataset AC TP RC FB AC TP RC FB

JESSE 41.7 95.9 11.4 66.5 >43200 >43200 17497 >43200
DISC 1.9 19.1 449.0 28.7 1619 9153 17212 >43200

Table 6: PTE vs DISC.
Enumerated Matches (×107) Elapse Time (seconds)

Dataset WB AS LJ OK UK WB AS LJ OK UK

PTE 1.3 6.5 2.9 28.6 62.8 86 76 81 92 472
DISC 7.8 38.8 17.3 171.4 376.6 14 15 35 77 161

8.1 DISC Testing
One-round vs. Multi-round HCube: We compare our
multi-round HCubeJoin (Multi) with the one-round HCube

(One) and the multi-round binary joins (Bin) using the group-
2 datasets. The counting queries tested are BENU q1-q4
(Fig. 10). The results are shown in Fig. 11(a). We show
the communication cost for all the 4 queries. The reduction
in communication cost leads to the reduction in running
time. For q1-q4 on LJ, on average, it saves 28% running
time. For communication cost, except q3, Multi outperforms
the others. For q3, One and Multi perform the same and
are better than Bin. The difference between Bin and One

becomes smaller while the size of the graph grows, whereas
Multi is stable. We explain it below. Complex queries and
larger input data will result in more partitions needed in
HCubeJoin, given the memory available. Thus, it results in
higher communication cost. Comparing to One, each query
of Multi is simpler, which makes it less prone to result in
more partitions when the size of the graph grows.
Attribute Ordering. We test our attribute ordering used
in the modified Leapfrog, using BENU q3, where the attribute
order satisfies both j-order and g-order. The result is shown
in the upper Fig. 11(b), where we denote order satisfies both
orders by J/G and the order by j-order by J. J/G can re-
duce the computing cost up to 10 times. Also, we com-
pare our pipeline approach (P) with multiple-run Leapfrog

which stores the group-by and aggregation results (S) with-
out pipeline using q3. The result is shown in the lower
Fig. 11(b).
kwP outputs zero intermediate results, whereas S needs to
store 3TB intermediate results.
Selected vs. All: We evaluate DISC in processing selected
queries and all queries. We used 6 queries, q1-q6, taken
from ECLOG (Fig. 10), since they are more important in link
prediction tasks [26] than the others in the ECLOG query set.
We conducted the testing using the group-1 datasets. The
results are shown in Fig. 14, where we denote the 6 queries
as a whole by selected and denote all the 32 queries used
in ECLOG (Fig. 10) by all. We observe that DISC is able to
efficiently evaluate a single query if needed. For example, on
AC, q38 is 24 times faster than all. Such an ability to process
selected counting queries efficiently is highly desirable.

Varying Pattern: We evaluate DISC with different pat-
terns, and show the total homomorphism number (Homo) in
the graph and matches we enumerate by DISC (Enumerated)

Table 7: DIST vs DISC
Enumerated Matches (×1010) Elapse Time (seconds)

Dataset WB AS LJ OK UK WB AS LJ OK UK

DIST 91.1 25.8 31.9 178.8 1537.8 1714 505 97.6 fail fail
DISC 14.0 6.9 27.7 28.1 431.4 659 713 953 5043 12179

Table 8: ECLOG vs DISC.

Enumerated Matches (×1010) Elapse Time(seconds)

Dataset AC TP RC FB AC TP RC FB

ECLOG 1559.6 3371.0 36.0 148.0 436 1367 335 597
DISC 0.04 0.8 40.6 1.46 593 1005 1802 2803

using LJ. In Fig. 13(a), we use the JESSE 5-node queries (q1-
q5) (Fig. 10), the x-axis is the number of edges in the 5-node
pattern graph from a star to a clique. The more edges, the
larger Enumerated. For the 5-clique (the rightmost), it needs
to enumerate all Homo. In Fig. 13(b), we test using a k-star
pattern graph for 1 ≤ k ≤ 6 (x-axis) with the center of the
star as the orbit node. The Enumerated is very small and
is effective for a large k-star. In Fig. 13(c), we test using a
k-clique pattern graph for 1 ≤ k ≤ 6 (x-axis) with an arbi-
trary node as the orbit node. The Enumerated is the same
as Homo, since a clique can neither be decomposed nor be
pushed down group-by and aggregation.
Sharing: We test the effectiveness of cost sharing using the
DIST, ECLOG, and JESSE query sets. The results are shown
in Fig. 15. The bar No-Share denotes no sharing, whereas
the bar Share denotes sharing. Share outperforms No-Share
by up to 5, 16 and 13 times on the query set of DIST, ECLOG

and JESSE, respectively. DISC failed to complete the query
set of ECLOG on FB when sharing is not enabled.
Scalability: We test the scalability of DISC on LJ by vary-
ing the number of workers from 1 to 16 on Spark. We used
3-, 4-, and 5-node queries, which consist of PTE q1, DIST
q1-q4, and BENU q1-q4

2, respectively. The results are shown
in Fig. 12. On average, by increasing the number of workers
from 1 to 16, DISC achieves 5.3×, 8.9× and 11.2× speedup
separately. The reason that DISC scaled worse on 3-node
queries is that the query is relatively simple, and the com-
putation cost is not the bottleneck.

8.2 Compare DISC with Others
We compared DISC with the state-of-the-art parallel/dis-

tributed approaches (i.e., PTE, DIST, ECLOG, and BENU)
and a general approach (JESSE). First, in terms of the effi-
ciency, we show that the main cost is to (1) check the con-
dition for the matches enumerated to be subgraph matches
and (2) increment the corresponding counter of the map-
ping of the orbit based on subgraph matches. We test us-
ing BENU (an enumeration-based approach) for the first 4
BENU queries (q1-q4) with the group-2 datasets. The re-
sults are shown in Fig. 16, as the percentage of the time
to check conditions and increment counters over the total
time. In Fig. 16(a), the results are for q1 over all group-2
datasets. In Fig. 16(b), the results are for all 4 queries over

2
We perform subgraph counting instead of induced subgraph counting

for BENU q1-q4 .

2503

Table 9: BENU vs DISC
Enumerated Matches (×1010) Elapse Time (seconds)

q1 q2 q3 q4 q1 q2 q3 q4

Dataset DISC BENU DISC BENU DISC BENU DISC BENU DISC BENU DISC BENU DISC BENU DISC BENU

WB 5.9 2679.3 0.7 3612.8 42.2 750.0 3.0 551.4 1068 >12685 85 >15876 3298 10452 199 5826
AS 3.3 500.8 0.2 502.1 8.3 61.8 0.4 55.4 963 6971 114 4086 1735 1138 87 812
LJ 2.8 5355.3 5.2 895.2 31.5 3616.6 28.0 1884.2 632 20552 425 31346 2663 41803 1093 7295
OK 12.0 4969.2 3.9 3339.9 28.9 354.7 9.4 260.4 3895 22899 1278 11534 >43200 4425 1713 1195
UK 40.3 185463.4 8.16 305747.2 1106.8 117980.5 442.8 62088.8 19766 >43200 6295 >43200 >43200 >43200 11898 >43200

Table 10: BENU vs DISC
Enumerated Matches (×1010) Elapse Time (seconds)

WB AS WB AS

Query DISC BENU DISC BENU DISC BENU DISC BENU

q5 5.8 2679.3 3.3 500.8 1109 >43200 1014 9158
q6 2.8 3612.8 0.5 502.1 117 >43200 132 6847
q7 42.2 750.0 8.3 61.8 4904 >14468 1958 3033
q8 5.2 551.4 0.7 55.4 173 >8586 99 1869
q9 87.5 10765562.1 17.0 681815.5 4238 >43200 2011 >43200
q10 48.1 4960415.6 9.2 408976.9 327 >43200 291 >43200
q11 12.2 323920.0 1.9 38493.1 563 >43200 373 >27949
q12 16.5 45396.7 2.3 2349.4 513 >43200 301 >7239

LJ. The major cost is to check conditions and increment
counters, and the number of matches enumerated matters.
In the following, in comparison with others, we show 2 sets
of numbers in tables. One set named Enumerated Matches

shows the numbers of matches to be enumerated, and one
set named Elapse Time shows the wall clock time to exe-
cute the queries (seconds). It is worth noting that we record
the Enumerated Matches and Elapse Time of executing all
queries of a query set together when DISC is compared to
DIST, ECLOG, JESSE. Also, note that the programming lan-
guages used are different. The code by C++ can be faster
than the code by Scala.
Comparison with JESSE: We compare DISC with JESSE

using the JESSE 58 5-node queries (Fig. 10) over the group-1
datasets. Since JESSE is a serial single-machine algorithm,
we ran both DISC and JESSE on a single core of a machine.
The results are shown in Table 5, from which we can observe
that DISC significantly outperforms JESSE.
Comparison with PTE: We compare DISC with PTE on
the triangle pattern graph, which is the only pattern sup-
ported by PTE, over the group-2 datasets by executing global
subgraph counting. The results are shown in Table. 6. Ob-
serve that the number of matches enumerated by DISC was
about 6 times of that by PTE, as expected: (i) DISC enu-
merates homomorphisms, while PTE enumerates matched
subgraphs, and (ii) a triangle has 6 homomorphisms.
Comparison with DIST: We compare DISC with DIST

on the DIST 11 4-node queries (Fig. 10) over the group-2
datasets. DISC enumerates a fewer number of matches than
DIST, as shown in Table. 7. Note that DIST is implemented
by C++ to deal with different cases, and DISC is a general
approach developed on Spark. DIST outperforms DISC in
AS and LJ, where the differences between DISC and DIST in
terms of the number of matches enumerated are relatively
small. DIST failed for these graphs large graphs such as
OK and UK, as DIST needs to construct a two-hop index,
to accelerate computation, which becomes overwhelmingly
large for OK (557GB) and UK (1, 180GB).
Comparison with ECLOG: We compare DISC with ECLOG

on the DIST 32 5-node queries with 1 edge orbit (Fig. 10)
over the group-1 datasets, since the number of queries is
large. The results are shown in Table 8. DISC enumerates
up to 103 times fewer matches than ECLOG. However, DISC
enumerates more matches than ECLOG on RC. The reason is
that for DISC, most (88.5%) of the matches enumerated on
RC come from 5-clique which cannot be further decomposed.

In terms of elapse time, since ECLOG is coded by C++ and
DISC is by Scala, ECLOG outperforms DISC in AC, RC and
FB.
Comparison with BENU: We compare DISC with BENU

on the BENU 4 5-node queries with 1 node orbit, 4 5-node
queries with 1 edge orbit, and 4 6-node queries with 1 node
orbit (Fig. 10) over the group-2 datasets. In this experiment,
we perform subgraph counting instead of induced subgraph
counting for each test, as BENU enumerates over the iso-
matches instead of induced iso-matches of the queries. The
results for the 4 5-node queries with 1 node orbit (q1, q2, q3,
and q4) are shown in Table 9 and the results for the remain-
ing 8 queries are shown in Table 10. As shown in Table 9,
(1) the number of matches enumerated by DISC is up to 104

times less than that of BENU, and (2) in terms of efficiency,
DISC outperforms BENU in all cases except q3 over both AS

and OK, and q4 over OK, due to the fact the number of
matches enumerated are comparatively similar. It is worth
noting that q1, q2, q3, and q4 are highly connected to which
BENU is well designed. For the remaining 8 queries q5-q12,
as the number of nodes increases, the difference between
the numbers of matches enumerated by BENU and DISC in-
creases, up to 105. DISC significantly outperforms BENU in
all cases, and BENU could not complete most of the queries
due to timeout or out-of-memory.

9. CONCLUSION
We propose an approach for local subgraph counting by

local homomorphism counting, and process local homomor-
phism counting by natural joins with group-by and aggre-
gation in a distributed system DISC on top of Spark. Our
approach is general to handle any k-node pattern graph with
any orbit o selected, since we only need to deal with the or-
bit using group-by. The key to achieving high efficiency by
homomorphism is that there is no need to check subgraph
isomorphism for any pattern graph p. Our approach can be
used to efficiently process a counting query or a collection of
counting queries by sharing their cost. We confirm the effi-
ciency of homomorphism counting (e.g., eliminating counts
for those that are not subgraph isomorphism matchings from
the total count for any possible matchings) using 114 local
subgraph counting queries over real large graphs. Extensive
experiments demonstrate that our DISC consistently out-
performs the state-of-the-art approaches, i.e., BENU, PTE,
JESSE, significantly, and outperforms DIST on large graphs.

Acknowledgement

This work is supported by the Research Grants Council of
Hong Kong, China under No. 14203618, No. 14202919, and
No. 14205617.

2504

10. REFERENCES

[1] http://konect.uni-koblenz.de.

[2] http://law.di.unimi.it/datasets.php.

[3] https://snap.stanford.edu/data/index.html.

[4] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli,
K. Olukotun, and C. Ré. EmptyHeaded: A Relational
Engine for Graph Processing. ACM Trans. Database
Syst., 42(4):20:1–20:44, 2017.

[5] M. Abo Khamis, H. Q. Ngo, and A. Rudra. Faq:
questions asked frequently. In Proc. of PODS’16,
pages 13–28, 2016.

[6] F. N. Afrati and J. D. Ullman. Optimizing Multiway
Joins in a Map-Reduce Environment. TKDE,
23(9):1282–1298, 2011.

[7] N. K. Ahmed, R. Rossi, J. B. Lee, T. L. Willke,
R. Zhou, X. Kong, and H. Eldardiry. Learning
role-based graph embeddings. arXiv preprint
arXiv:1802.02896, 2018.

[8] N. K. Ahmed, R. A. Rossi, R. Zhou, J. B. Lee,
X. Kong, T. L. Willke, and H. Eldardiry. A framework
for generalizing graph-based representation learning
methods. arXiv preprint arXiv:1709.04596, 2017.

[9] N. K. Ahmed, T. L. Willke, and R. A. Rossi.
Estimation of local subgraph counts. In Prof. of IEEE
BigData’16, pages 586–595, 2016.

[10] N. K. Ahmed, T. L. Willke, and R. A. Rossi. Exact
and estimation of local edge-centric graphlet counts.
In Workshop on Big Data, Streams and Heterogeneous
Source Mining: Algorithms, Systems, Programming
Models and Applications, pages 1–17, 2016.

[11] L. Akoglu, H. Tong, and D. Koutra. Graph based
anomaly detection and description: a survey. Data
Min. Knowl. Discov., 29(3):626–688, 2015.

[12] O. Amini, F. V. Fomin, and S. Saurabh. Counting
subgraphs via homomorphisms. In Proc. of ICALP’09,
pages 71–82, 2009.

[13] K. Ammar, F. McSherry, S. Salihoglu, and
M. Joglekar. Distributed Evaluation of Subgraph
Queries Using Worst-case Optimal Low-memory
Dataflows. PVLDB, 11(6):691–704, 2018.

[14] A. Atserias, M. Grohe, and D. Marx. Size Bounds and
Query Plans for Relational Joins. In Proc. of
FOCS’08, pages 739–748, 2008.

[15] N. Bakibayev, T. Kociskỳ, D. Olteanu, and
J. Závodnỳ. Aggregation and ordering in factorised
databases. PVLDB, 6(14), 2013.

[16] P. Beame, P. Koutris, and D. Suciu. Communication
steps for parallel query processing. In R. Hull and
W. Fan, editors, Proc. of PODS’13, pages 273–284,
2013.

[17] A. R. Benson, D. F. Gleich, and J. Leskovec.
Higher-order organization of complex networks.
Science, 353(6295):163–166, 2016.

[18] C. Borgs, J. Chayes, L. Lovász, V. T. Sós, and
K. Vesztergombi. Counting graph homomorphisms. In
Topics in Discrete Mathematics, pages 315–371. 2006.

[19] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, and
A. Panconesi. Counting Graphlets: Space vs Time. In
Proc. of WSDM’17, pages 557–566, 2017.

[20] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, and

A. Panconesi. Motif Counting Beyond Five Nodes.
TKDD, 12(4):48, 2018.

[21] M. Bressan, S. Leucci, and A. Panconesi. Motivo: fast
motif counting via succinct color coding and adaptive
sampling. arXiv preprint arXiv:1906.01599, 2019.

[22] S. Chu, M. Balazinska, and D. Suciu. From Theory to
Practice: Efficient Join Query Evaluation in a Parallel
Database System. In Proc. of SIGMOD’15, pages
63–78, 2015.

[23] J. S. Coleman. Social Capital in the Creation of
Human Capital. American Journal of Sociology,
94:S95–S120, 1988.

[24] R. Curticapean, H. Dell, and D. Marx.
Homomorphisms are a good basis for counting small
subgraphs. In Proc. of STOC’17, pages 210–223, 2017.

[25] V. Dalmau and P. Jonsson. The complexity of
counting homomorphisms seen from the other side.
Theoretical Computer Science, 329(1-3):315–323, 2004.

[26] V. S. Dave, N. K. Ahmed, and M. A. Hasan. E-CLoG:
Counting edge-centric local graphlets. In Proc. of 2017
IEEE BigData, pages 586–595, 2017.

[27] J. Dı́az, M. Serna, and D. M. Thilikos. Counting
h-colorings of partial k-trees. Theoretical Computer
Science, 281(1-2):291–309, 2002.

[28] M. Dyer and C. Greenhill. The complexity of counting
graph homomorphisms. In Proc. of SODA’00, pages
246–255, 2000.

[29] E. R. Elenberg, K. Shanmugam, M. Borokhovich, and
A. G. Dimakis. Beyond Triangles: A Distributed
Framework for Estimating 3-profiles of Large Graphs.
In Proc. of SIGKDD’15, pages 229–238, 2015.

[30] E. R. Elenberg, K. Shanmugam, M. Borokhovich, and
A. G. Dimakis. Distributed Estimation of Graph
4-Profiles. In Proc. of WWW’16, pages 483–493, 2016.

[31] G. Fagiolo. Clustering in complex directed networks.
Physical Review E, 76(2):026107, 2007.

[32] G. Gottlob, G. Greco, N. Leone, and F. Scarcello.
Hypertree Decompositions: Questions and Answers.
In Proc. of PODS’16, pages 57–74, 2016.

[33] G. Gottlob, N. Leone, and F. Scarcello. Hypertree
Decompositions and Tractable Queries. Journal of
Computer and System Sciences, 64(3):579–627, 2002.

[34] M. Grohe. The complexity of homomorphism and
constraint satisfaction problems seen from the other
side. Journal of the ACM, 54(1):1–24, 2007.

[35] M. Grohe and D. Marx. Constraint Solving via
Fractional Edge Covers. ACM Trans. Algorithms,
11(1):4:1–4:20, 2014.

[36] W. Hayes, K. Sun, and N. Przulj. Graphlet-based
measures are suitable for biological network
comparison. Bioinformatics, 29(4):483–491, 2013.

[37] P. Hell and J. Nešetřil. On the complexity of
h-coloring. Journal of Combinatorial Theory, Series
B, 48(1):92–110, 1990.

[38] T. Hočevar and J. Demšar. A combinatorial approach
to graphlet counting. Bioinformatics, 30(4):559–565,
2014.

[39] T. Hočevar and J. Demšar. Combinatorial algorithm
for counting small induced graphs and orbits. PloS
one, 12(2):e0171428, 2017.

[40] P. W. Holland and S. Leinhardt. A Method for

2505

Detecting Structure in Sociometric Data. In Social
Networks, pages 411–432. 1977.

[41] J. Huang, K. Venkatraman, and D. J. Abadi. Query
optimization of distributed pattern matching. In Proc.
of ICDE’14, pages 64–75, 2014.

[42] M. Jha, C. Seshadhri, and A. Pinar. Path sampling: A
fast and provable method for estimating 4-vertex
subgraph counts. In Proc. of WWW’15, pages
495–505, 2015.

[43] O. Kalinsky, Y. Etsion, and B. Kimelfeld. Flexible
caching in trie joins. arXiv preprint arXiv:1602.08721,
2016.

[44] H. Kim, J. Lee, S. S. Bhowmick, W.-S. Han, J. Lee,
S. Ko, and M. H. Jarrah. Dualsim: Parallel subgraph
enumeration in a massive graph on a single machine.
In Proc. of SIGMOD’16, pages 1231–1245, 2016.

[45] L. Lai, L. Qin, X. Lin, and L. Chang. Scalable
Subgraph Enumeration in MapReduce. PVLDB,
8(10):974–985, 2015.

[46] L. Lai, L. Qin, X. Lin, Y. Zhang, L. Chang, and
S. Yang. Scalable Distributed Subgraph Enumeration.
PVLDB, 10(3):217–228, 2016.

[47] N. N. Liu, L. He, and M. Zhao. Social temporal
collaborative ranking for context aware movie
recommendation. ACM TIST, 4(1):15:1–15:26, 2013.

[48] I. Melckenbeeck, P. Audenaert, D. Colle, and
M. Pickavet. Efficiently counting all orbits of graphlets
of any order in a graph using autogenerated equations.
Bioinformatics, 34(8):1372–1380, 2017.

[49] I. Melckenbeeck, P. Audenaert, T. Michoel, D. Colle,
and M. Pickavet. An algorithm to automatically
generate the combinatorial orbit counting equations.
PloS one, 11(1), 2016.

[50] I. Melckenbeeck, P. Audenaert, T. Van Parys, Y. Van
De Peer, D. Colle, and M. Pickavet. Optimising orbit
counting of arbitrary order by equation selection.
BMC bioinformatics, 20(1):27, 2019.

[51] A. Mhedhbi and S. Salihoglu. Optimizing subgraph
queries by combining binary and worst-case optimal
joins. PVLDB, 12(11):1692–1704, 2019.

[52] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,
D. Chklovskii, and U. Alon. Network Motifs: Simple
Building Blocks of Complex Networks. Science,
298(5594):824–827, 2002.

[53] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case
Optimal Join Algorithms: [Extended Abstract]. In
Proc. of PODS’12, pages 37–48, 2012.

[54] H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back:
new developments in the theory of join algorithms.
ACM SIGMOD Record, 42(4):5–16, 2014.

[55] C. C. Noble and D. J. Cook. Graph-based anomaly
detection. In Proc. of SIGMOD’03, pages 631–636,
2003.

[56] M. Ortmann and U. Brandes. Efficient orbit-aware
triad and quad census in directed and undirected
graphs. Applied network science, 2(1):13, 2017.

[57] H.-M. Park, S.-H. Myaeng, and U. Kang. Pte:
Enumerating trillion triangles on distributed systems.
In Proc. of SIGKDD’16, pages 1115–1124, 2016.

[58] N. Pashanasangi and C. Seshadhri. Efficiently

counting vertex orbits of all 5-vertex subgraphs, by
evoke. In Proc. of WSDM’20, pages 447–455, 2020.

[59] A. Pinar, C. Seshadhri, and V. Vishal. ESCAPE:
Efficiently Counting All 5-Vertex Subgraphs. In Proc.
of WWW’17, pages 1431–1440, 2017.

[60] N. Pržulj. Biological network comparison using
graphlet degree distribution. Bioinformatics,
23(2):e177–e183, 2007.

[61] N. Pržulj, D. G. Corneil, and I. Jurisica. Modeling
interactome: scale-free or geometric? Bioinformatics,
20(18):3508–3515, 2004.

[62] M. Qiao, H. Zhang, and H. Cheng. Subgraph
Matching: On Compression and Computation.
PVLDB, 11(2):176–188, 2017.

[63] P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparicio,
and F. Silva. A survey on subgraph counting:
Concepts, algorithms and applications to network
motifs and graphlets. CoRR, abs/1910.13011, 2019.

[64] R. A. Rossi, N. K. Ahmed, A. Carranza, D. Arbour,
A. Rao, S. Kim, and E. Koh. Heterogeneous network
motifs. arXiv preprint arXiv:1901.10026, 2019.

[65] R. A. Rossi, N. K. Ahmed, and E. Koh. Higher-order
network representation learning. In Proc. of WWW’18
(Companion), pages 3–4, 2018.

[66] R. A. Rossi, L. K. McDowell, D. W. Aha, and
J. Neville. Transforming graph data for statistical
relational learning. J. Artif. Intell. Res., 45:363–441,
2012.

[67] R. A. Rossi, A. Rao, T. Mai, and N. K. Ahmed. Fast
and accurate estimation of typed graphlets.

[68] R. A. Rossi, R. Zhou, and N. K. Ahmed. Deep feature
learning for graphs. arXiv preprint arXiv:1704.08829,
2017.

[69] R. Rotabi, K. Kamath, J. Kleinberg, and A. Sharma.
Detecting strong ties using network motifs. In Proc. of
WWW’17, pages 983–992, 2017.

[70] T. K. Saha and M. Al Hasan. Finding network motifs
using MCMC sampling. In Complex Networks VI,
pages 13–24. 2015.

[71] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access Path Selection in
a Relational Database Management System. In Proc.
of SIGMOD’79, pages 23–34, 1979.

[72] S. Son, A. R. Kang, H.-c. Kim, T. Kwon, J. Park, and
H. K. Kim. Analysis of Context Dependence in Social
Interaction Networks of a Massively Multiplayer
Online Role-Playing Game. PLOS ONE, 7(4):e33918,
2012.

[73] S. Sun, Y. Che, L. Wang, and Q. Luo. Efficient
parallel subgraph enumeration on a single machine. In
Proc. of ICDE’19, pages 232–243, 2019.

[74] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li.
Efficient Subgraph Matching on Billion Node Graphs.
PVLDB, 5(9):788–799, 2012.

[75] C. Tsourakakis. The k-clique densest subgraph
problem. In Proc. of WWW’15, pages 1122–1132,
2015.

[76] C. E. Tsourakakis, J. Pachocki, and M. Mitzenmacher.
Scalable motif-aware graph clustering. In Proc. of
WWW’17, pages 1451–1460, 2017.

[77] S. Tu and C. Ré. Duncecap: Query plans using

2506

generalized hypertree decompositions. In Proc. of
SIGMOD’15, pages 2077–2078, 2015.

[78] T. L. Veldhuizen. Triejoin: A Simple, Worst-Case
Optimal Join Algorithm, 2014.

[79] P. Wang, J. Lui, B. Ribeiro, D. Towsley, J. Zhao, and
X. Guan. Efficiently estimating motif statistics of
large networks. TKDD, 9(2):8, 2014.

[80] P. Wang, J. Zhao, X. Zhang, Z. Li, J. Cheng, J. C.
Lui, D. Towsley, J. Tao, and X. Guan. MOSS-5: A
fast method of approximating counts of 5-node
graphlets in large graphs. TKDE, 30(1):73–86, 2017.

[81] Z. Wang, R. Gu, W. Hu, C. Yuan, and Y. Huang.
BENU: Distributed Subgraph Enumeration with
Backtracking-Based Framework. In Proc. of ICDE’19,
pages 136–147, 2019.

[82] B. F. Welles, A. V. Devender, and N. Contractor. Is a
”friend” a friend? Investigating the structure of
friendship networks in virtual worlds. In Proc. of The
28th Annual CHI Conference on Human Factors in
Computing Systems, pages 4027–4032, 2010.

[83] W. P. Yan and P.-B. Larson. Eager aggregation and
lazy aggregation. Group, 1:G2, 1995.

[84] C. Yang, M. Lyu, Y. Li, Q. Zhao, and Y. Xu. SSRW:
A Scalable Algorithm for Estimating Graphlet
Statistics Based on Random Walk. In Proc. of
DASFAA’18, pages 272–288, 2018.

[85] H. Yin, A. R. Benson, and J. Leskovec. Higher-order
clustering in networks. Physical Review E,
97(5):052306, 2018.

[86] H. Yin, A. R. Benson, and J. Leskovec. The local
closure coefficient: a new perspective on network
clustering. In Proc. of WSDM’19, pages 303–311,
2019.

2507

